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RETENTION OF FlTEL IN FrNG-STEN-LMIUM DIOXIDE FUEL ELFMENTS (U) 

by Neal T. Saunders, Michael A. G e d w i l l ,  
and Richard E. Gluyas 

Lewis Research Center 

Cleveland, Ohio 
National Aeronautics and Space Administration 

I e IhJTRODUCTION 

A tungsten, water-moderated, nuclear reac tor  concept i s  current ly  

being considered by NASA f o r  space propulsion. This reactor  (described 

i n  R e f .  1) would use f u e l  elements consisting of uranium dioxide ( U O z )  

p a r t i c l e s  dispersed i n  a continuous tungsten ( W )  matrix. Since the  

reac tor  would operate i n  the thermal xeutron spectrum a t  temperatures 

t o  a t  l e a s t  4.500° F, r e l a t i v e l y  low f u e l  loadings (10 t o  35 volume % U O z )  

a r e  being considered. 

of the good high-temperature strength and thermal conduc%ivity of W . .  

These l o w  fue l  loadings allow maximum u t i l i z a t i o n  

One of the  major problem areas associated with the use of W-UOz 

f u e l  elements i n  t h i s  type of reactor i s  the possible loss of f u e l  during 

high-temperature operation. This problem stems primarily from two differ- 

ent causes: 

1) the  high vapor pressure of UO2 a t  elevated temperatures, and 

2 )  the decomposition of UO2 a t  elevated temperatures and the  sub- 

sequent prec ip i ta t ion  of Ti a t  lower temperatures, which 

leads t o  the cracking of the W matrix along the grain boundaries. 

These causes a r e  soaewhat in te r re la ted  because f u e l  l o s s  through the 

cracked grain boundaries i n  the  second case eventually occurs by vapori- 

zat ion.  However, the  two causes can be studied independently s ince 
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vaporization losses  can be evaluated uz?der constant (noncyclic) heating 

conditions while the  desti-dctive effects  of f u e l  decomposition a r e  

predominant under thermal cycling conditions. Combination of the solu- 

t ions  resu l t ing  from independent study of these e f f e c t s  should lead t o  

improved f u e l  re ten t ion  capab i l i t i e s  f o r  W-UOz composites. 

A program i s  being conducted a t  L e w i s  t o  study both aspects of the  

f u e l  re ten t ion  problem. Earlier r e su l t s  from these s tud ies  a r e  reported 

i n  Ref. 2 ,  and the  more recent  resu l t s  obtai ied from t h i s  continuing 

program a r e  reported herein.  

11. FUEL SrApC)RIZATION 

Since U02 has a r e l a t i v e l y  high vapor pressure a t  elevated tempera- 

tu res  (e.g., approximately 3 mm of  Bg a t  4500' F) ,  any U02 exposed t o  

rocket reactor  atmospheres (such as the vacuum of space or  the  gaseous 

hydrogen propellant ) w i l l  vaporize a t  high temperatures 

conditions, surface f u e l  pa r t i c l e s  i n  W-302 composites can vaporize 

away from. the  composites, and eventually, adJaceot, interconnected 

p a r t i c l e s  w i l l  be l o s t  from withit? the  composites. 

two differer, t  methods have ljeeri found t o  be e f fec t ive  i n  reducing t h i s  

type of f u e l  l o s s .  h e  met3od imoives cladding of the surfaces of the 

composites with a t h i n  (approximately 9.001 i n . )  layer  of unfueled W .  

The other method depends u p o ~  preventing interconnection of the  U02 

p a r t i c l e s  within the composites by precoa thg  the  individual  f u e l  pa r t i c l e s  

with W p r ior  t o  t h e i r  Consolidation in to  bodies. Both of these methods 

of f u e l  re ten t ion  are cursec t ly  beirg studied. 

Under these 

A s  discussed i n  R e f .  2 ,  
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A. Surface Claddilrlg 

For maximum effeetiveness,  surfacre claddings must be highly dense 

and must be metal lurgical ly  bonded t o  the  W matrix of t h e  fueled core. 

One method (described i n  Ref. 3) of meeting these requirements involves 

appl icat ion of claddings t o  the  top  and bottom surfaces of f la t  p l a t e s  

by roll-bonding of thin,  wrought W f o i l  during a hot - ro l l ing  process t h a t  

is  used t o  increase the density of composites. 

qu i te  usefu l  s ince high qua l i ty  cladding can be e a s i l y  bonded t o  the  

major surfaces of fueled cores. Therefore, most of the  clad tes t  

specimens used i n  these s tud ies  have u t i l i z e d  t h i s  type of cladding. 

This method has proven 

Because roll-bonded claddings on the  two major surfaces do not 

prevent l o s s  of some f u e l  through t3e exposed edges of fueled composites, 

other types of claddings a re  required f o r  use e i the r  i n  conjunction with 

o r  i n  place of rol2.-bonded W foil-. 

appear qu i te  proraising a re :  

bonding of W foil; and vapoz deposit302 of W 5y hydrogen reduction of 

W hal ides .  

Three methods of cladding which 

plasma sprayixg of W powders; pressure 

The three  d i f f e ren t  methods OB applying daddings  are a l l  being 

s tudied because of t h e i r  u se fuhess  f? d i f f e ren t  appl icat ions.  

example, p l a s m  spraying (although possibly usefu l  f o r  cladding e n t i r e  

sur faces)  appears t o  be most usefu l  e i the r  f o r  edge cladding of r o l l -  

c lad  p l a t e s  o r  for  repair ing defects i r z  other types of cladding t h a t  

For 
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might be cause1 by handling or machining of f u e l  element components. 

Pressure bonding of f o i l  appears t o  be  the  bes t  method of producing high 

qua l i ty  claddings of uniform thickness, but t h i s  method of cladding is 

d i f f i c u l t  t o  apply t o  complex f u e l  element configurations. 

t ion,  on the other hand, i s  not  as geometrically l imited,  but  is more 

d i f f i c u l t  t o  control. and t o  a t t a i n  uriform cladding thicknesses. 

Vapor deposi- 

The effectiveness of a l l  of these methods of applying surface 

claddings has been demonstrated i n  numerous high-temperature t e s t s .  

For example, 2-hour f u e l  loss t e s t s  i n  flowing hydrogen a t  4500' F have 

indicated t h a t  l e s s  than 1 weight % of the f u e l  i s  l o s t  from t h i n  

80 volume % W + 20 volume % U02 composites t h a t  were surface clad by 

any of the three cladding methods being studied, while s i m i l a r  unclad 

specimens l o s t  about 18 weight $ U32 under the  same tes t  conditions. 

An example of a 80 volume $ W  .+ 2 3  volume % U02 composite t h a t  w a s  

surface-clad by vapor deposition is  shown ii Fig. 1. 

w a s  t e s t ed  f o r  2 hours a t  4500 

t h a t  the t h i n  W claddi?7g ef fec t ive ly  prevented l o s s  of the fue l .  

This composite 

0 F prior t o  sectioning, and it is apparent 

E. Coated Pa r t i c l e s  

Although th in  surface claddings can be highly e f fec t ive  i n  re ta in ing  

the  f u e l  i n  W-U02 composites, the necessity f o r  assuring good bonding 

increases the  problems i n  both fabricat ion aod inspectior_ of complex f u e l  

element conf'igurations . 
precoating individual  U02 par t i c l e s  p r io r  t o  consolidation is a l s o  being 

s tudied.  

Because of t h i s ,  t he  a l t e rna te  method of 



5 

. Development of t h i s  method of reducing f u e l  vaporization losses  has 

been hindered by d i f f i c u l t i e s  eccountered i n  coating of the  p a r t i c l e s  and 

i n  consolidation of the pa r t i c l e s  into dense composites, but  solut ions 

t o  these problems are being developed. 

t he  p a r t i c l e  coating process has been contamination of the pa r t i c l e s  with 

f luor ide  impurit ies as a r e s u l t  of the WFg vapor deposition process 

usual ly  used t o  coat the  par t ic les .  

HF generated i n  the  deposition process has resu l ted  i n  f luoride contents 

of from 150 t o  3000 parts per m i l l i o n  by weight (ppm) . 
suppl iers  a r e  now avoiasiz?g t h i s  f luoride contamination problem by using 

hydrogen reduction of W C l 6  because the HCL generated does not r ead i ly  

r eac t  with UOz. 

(see Fig. 2 ( a ) )  containing less than 50 ppm of a l l  hal ides .  Consolida- 

t i on  of the r e l a t i v e l y  large (about 60p diameter) coated U02 par t i c l e s  

i n to  dense composites has a l s o  presented fabr ica t ion  d i f f i c u l t i e s ,  but  

recent  developments i n  severa l  fabr icat ion processes have resu l ted  i n  

composites with dens i t ies  greater  than 98% of theore t ica l .  

promising processes f o r  comolidating these pa r t i c l e s  involve hot  

compaction i n  molybdenum containers ky r o l l i n g ,  i s o s t a t i c  pressing, or 

pneuma t i c  impac t i on. 

A major problem associated with 

The reac t ion  of t he  U02 w i t h  the  

However, some 

U s e  of t h i s  process has resu l ted  i n  pa r t i c l e s  

The most 

With these recent  improvemer;_ts i2  p a r t i c l e  coating and consolidation 

techniques, high qua l i ty  W-302 composites are naw being produced from 

coated pa r t i c l e s ,  and f u e l  re tent ion tests are t e i r g  i i i t i a t e d  t o  
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determine the  usefulness of t h i s  f u e l  re ten t ion  method. The i n i t i a l  

data from 80 volume 4 W $. 20 volume $ U02 composites t ha t  were consolidated 

by roll-compaction and tes ted  a t  450Oo F i n  % indicate  a f u e l  loss  of 

2.6 weight 4 i n  2 hours. 

( see  Fig. 2(b)  ) indicated tha t  t h i s  measured weight loss  was due 

en t i r e ly  t o  the  lo s s  of f u e l  par t ic les  adjacent t o  the surfaces and that 

the W ba r r i e r s  between the par t ic les  had ef fec t ive ly  prevented l o s s  of 

i n t e rna l  par t ic les .  

deformation of the pa r t i c l e s ,  the l o s s  of the surface pa r t i c l e s  is  due, 

i n  par t ,  t o  cracking of the coatings on the surface pa r t i c l e s  during 

consolidation. Therefore, consolidation processes t h a t  involve l e s s  

severe p a r t i c l e  deformation should lead t o  even lower f u e l  losses.  

Metallographic examination of these composites 

Since the roll-compaction process produced considerable 

C .  Comparison of Surface Cladding and Coated Par t ic les  

Although both surface cladding and precoating of the f i e 1  pa r t i c l e s  

a r e  e f fec t ive  i n  reducing U02 VapWiZatiOn losses  from W-U02 composites, 

the r e s u l t s  of f u e l r e t e n t i m  t e s t s  conducted t o  date indicate that 

surface claddings a re  somewhat more e f fec t ive  in  re ta ining fue l .  

However, the  technology of producing and consolidating coated pa r t i c l e s  

is not  as far advanced as  tha t  of surface cladding methods. 

the small amount of f u e l  loss tha t  is associated w i t h  loss  of some sur- 

face pa r t i c l e s  i n  composites produced from coated pa r t i c l e s  i s  con- 

s idered tolerable  fo r  reactor  use. 

has the  advantages of produrcizlg more uniform f u e l  dispersions and of 

In addition, 

Since the use of coated pa r t i c l e s  
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reducing nondestructive t e s t ing  requirements ( i .e., inspection of core- 

to-clad bonds is  not required),  W coating of U02 pa r t i c l e s  i s  considered 

t o  be the prime method f o r  reducing fue l  vaporization from W-UO2 f u e l  

elements. However, fo r  addi t ional  r e l i a b i l i t y ,  it may be desirable t o  

u t i l i z e  both coated pa r t i c l e s  and surface claddings t o  minimize f u e l  

vaporization. 

111. €~UEJJ DECOMPOSITTON 

A s  described i n  Ref. 2 ,  s l i g h t  decomposition of U02 a t  elevated 

temperatures can present a serious fue l  re tent ion problem under thermal 

cycling conditions such as those tha t  would be encountered i n  successive 

s ta r tups  and shutdowns of the reactor.  

f a c t  that U02 has a range of so lub i l i t i e s  f o r  both U and 02 a t  elevated 

temperatures. Therefore, a t  the high reactor  operating temperatures, 

U02 pa r t i c l e s  encapsulated in  a W matrix can change in  composition by 

losing 02 t o  the matrix and subsequently prec ip i ta t ing  excess U a t  

lower temperatures. 

i n  gross deter iorat ion of the composites and a rapid loss  of fue l .  

This problem stems from the 

Migration of  the U through the W matrix can r e s u l t  

A. Effects of Cycling Variables 

Results of extensive studies of t h i s  problem (Ref. 4) indicate 

that the thermal cycling conditions cazz grea t ly  a f f ec t  the r a t e  of f u e l  

loss .  Increasing the maximum temperature, the number of cycles, and/or 

the duration of cycles can cause ar! increase i n  the r a t e  of f u e l  l o s s  

per cycle from the composites. The fuel loss r a t e  i s  a l so  grea t ly  
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accelerated by cycling i n  a hydrogen atmosphere r a the r  than i n  vacuo 

or i n  an i n e r t  atmosphere. 

cur ren t ly  being investigated a r e  the flow rate and pressure of the tes t  

atmosphere. 

more c r i t i c a l  tes t  than a nonflowing atmosphere, probably due t o  

accumulation i n  the l a t t e r  of reaction products r e su l t i ng  from hydrogen 

reduction of U02. 

sures  and flow r a t e s  expected i n  reactor  operations are a s  ye t  unknown. 

The independent and combined e f f ec t s  of these two var iables  a r e  being 

evaluated i n  a f u e l  element t e s t  f a c i l i t y  recent ly  i n s t a l l e d  a t  L e w i s .  

Two other important cycling tes t  var iables  

A slowly flowing (35 scfh) hydrogen atmosphere presents a 

However, the  e f fec ts  of the  high hydrogen gas pres- 

Because of the influence of t e s t ing  variables,  a standard s e t  of 

cyc l ic  t es t  conditions w a s  established f o r  t e s t i n g  of the various 

composites discussed i n  t h e  following paragraphs. These conditions were 

chosen t o  simulate the  reactor  operating conditions a s  c losely as 

possible  i n  a laboratory tes t .  The t e s t  conditions involve thermal 

cycling of specimens between ambient temperature and 4500' F i n  a 

flowing hydrogen atmosphere (35 scfh a t  atmospheric pressure) 

specimens a r e  heated and cooled i n  l e s s  than 2 minutes while the hold 

t h e  a t  temperature f o r  each cycle is 10 minutes. Weight changes a r e  

usua l ly  measured a f t e r  each 5 cycles. 

The 

Using t h i s  s e t  of cycling conditions, a se r i e s  of W-UO2 composites 

with varying f u e l  loadings w a s  t es ted .  

(and a l l  subsequently described specimens ) were fabricated by the  

These thin,  rectangular specimens 
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s in t e r ing  and hot-rol l ing process described i n  R e f .  3, and were surface 

clad on the  two major surfaces by roll-cladding with W f o i l .  

loss  data resu l t ing  from t h i s  se r ies  of t e s t s  are summarized i n  Fig. 3. 

These p lo t s  indicate  t h a t  increases i n  f u e l  loading g rea t ly  increase 

the  r a t e  of f u e l  l o s s  from the  composites. This change i n  f u e l  loss 

r a t e  (which w a s  much greater  than that  an t ic ipa ted)  i s  probably due t o  

the  greater  amount of f u e l  being reduced and the grea te r  contact and 

in te rac t ion  of f u e l  pa r t i c l e s  i n  the composites w i t h  the  higher f u e l  

loadings. 

t e s t  conditions, most of t h i s  type of t e s t i n g  has been performed on 

composites with the  higher range of f u e l  loadings of i n t e r e s t  f o r  

reac tor  use - .20  and 35 volume $ U02. 

The f u e l  

Since the higher f u e l  loadings a r e  more c r i t i ca l  under these 

B. Possible Solutions 

Considerable e f f o r t  has been expended i n  attempting t o  understand 

the cause and i n  seeking solut ions fo r  the thermal cycling e f f ec t .  

While t h i s  phenomena is  not ye t  completely understood, t e s t  r e s u l t s  

(described i n  R e f .  4)  indicate  tha t  the detrimental  e f f ec t  can be reduced 

by a t  l e a s t  three d i f f e ren t  methods. 

creasing effect iveness)  : 

These are ( l i s t e d  i n  order of in-  

(1) addit ions of small amounts of f i n e  thorium dioxide ( tho r i a ,  

Th%) pa r t i c l e s  t o  the  W matrix; 

( 2 )  use of f i n e  (about 4.1) U02 pa r t i c l e s  instead of the  l a rge r  (about 

501.1) f u e l  particles; and/or 
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(3) additions of metal oxide additives i n  s o l i d  so lu t ion  with the UOz. 

The effectiveness of t he  f i r s t  two methods is  indicated i n  the f u e l  loss  

p lo t s  shown i n  Fig. 4. 

f i n e  Tho2 pa r t i c l e s  are a t  l e a s t  p a r t i a l l y  e f f ec t ive  i n  prolonging the 

cyc l ic  lifetime of W-U02 composites, but that the  thor ia ted  composites do 

not  meet the establ ished goal  of 5 weight $ maximum fuel loss a f t e r  

25 cycles.  On the other hand, use of f i n e  U02 p a r t i c l e s  i n  the composites 

r e su l t ed  i n  cycl ic  l i fe t imes  that could possibly be considered f o r  

reac tor  use. Unfortunately, use of the f i n e  U02 p a r t i c l e s  r e s u l t s  i n  an 

appreciable reduction i n  s t rength of t h e  composites. I n  addition, it is  

extremely d i f f i c u l t  t o  tungsten-coat the  f ine  f u e l  pa r t i c l e s .  Therefore, 

t h i s  method of reducing the  e f f ec t s  of thermal cycLLn@; is  not considered 

a prime method a t  t h i s  t i m e .  

These p lo t s  demonstrate that additions of 2 volume $, 

Currently, the most promising method of reducing f u e l  decomposition 

i s  through the addi t ion of other metal oxides t o  the  U02.  This method 

apparently is  effect ive because it s t ab i l i ze s  the  f u e l  by reducing the 

oxygen a c t i v i t y  of the f u e l  and thus reduces the  amount of U02 reduction. 

The i n i t i a l  s tudies  of t h i s  method o f  f u e l  s t a b i l i z a t i o n  used 10 mole $, 

addi t ions of zirconia ( Z r O z ) ,  t ho r i a  ( T h O z ) ,  and ca l c i a  (CaO) e 

of t h i s  study (reported i n  Ref. 5 )  indicated that C a O  addi t ions were the 

most e f f ec t ive  of these i n  reducing f u e l  loss from p a r t i a l l y  c lad (major 

surfaces  c lad but edges unclad) 80 volume $I W + 20 volume $I UO2 

composites. More recent  studies (reported i n  R e f .  6 )  involved compari- 

The r e s u l t s  



son of the effectiveness of C a O  or  f i t r i a  ( Y 2 O 3 )  add i t ions in  f i l l y  c lad 

composites. The r e s u l t s  of t h i s  la t ter  study a r e  summarized i n  Fig. 5. 

These p lo ts  compare the  amount of f u e l  loss  from composites containing 

e i t h e r  20 or 35 volume % f u e l  with 10 mole $I of the  addi t ives  i n  the 

U02. 

i n  prolonging the  cyc l ic  l i f e ,  but that YzO3 additions are the  more 

e f fec t ive .  

These p lo ts  indicate  t h a t  both C a O  and Y2O3 addi t ions a r e  e f f ec t ive  

Although the p l o t s  shown i n  Fig. 5 indicate  t h a t  e i t h e r  C a O  or  

Y203 addi t ions could be used t o  s t a b i l i z e  the composites f o r  up t o  

25 cycles, metallographic examination of samples that were subjected t o  

25 cycles indicates  t h a t  weight loss measurements do not  f u l l y  describe 

the  s t a b i l i t y  of composites. 

t a in ing  e i the r  C a O  or Y2O3 i n  the fue l  a r e  shown fo r  comparison i n  Fig. 6. 

Appreciable f u e l  migration along tungsten grain boundaries had occurted 

i n  the  sample that contained C a O  additions, but no appreciable migration 

is  evident i n  the Y2O3 s t ab i l i zed  composite. The f u e l  migration through 

the  W grain boundaries of t h e  calciated composite would be expected t o  

decrease the  s t rength of t h i s  material. 

Y2O3 addi t ions a r e  current ly  considered the  more promising f o r  reactor  use. 

Although Y2O3 s t ab i l i zed  composites appear su i t ab le  f o r  use, the  

Photomicrographs of t e s t ed  composites con- 

Based on these observations, 

l a rge  increase i n  ceramic phase associated with 10 mole $ addi t ions 

(e.g., 10 mole % Y203 additions r e su l t s  i n  a ceramic phase of about 

42 volume $I i n  a W-UOz composite with a f u e l  loading equivalent t o  35 volume % 
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U 0 2 )  could cause an appreciable decrease i n  the s t rengths  of the  composites, 

pa r t i cu la r ly  a t  the higher reac tor  f u e l  loadings. 

indicates  t ha t  the ult imate t e n s i l e  s t rength of W-U02 composites a t  4500° F 

decreases rap id ly  a t  f u e l  loadings greater  than about 30 volume $. 

fore ,  s tudies  a r e  now being made t o  determine if lower amounts of Y203 

a r e  as sa t i s f ac to ry  and i f  other metal oxide addi t ions a r e  as good or 

even more e f fec t ive  than Y 2 0 3  additions.  

Data reported i n  Ref. 7 

There- 

I n i t i a l  s tudies  ( reported i n  Ref. 6 )  on the e f f ec t s  of lower addi- 

t ions  of Y2O3 u t i l i z e d  additions of 2.5, 5, and 10 mole $. 

obtained from these t e s t s  a r e  plot ted i n  Fig. 7. These p lo t s  indicate  

t h a t  addi t ions of a t  l e a s t  5 mole % a r e  needed i n  order t o  assume tha t  

appreciable migration of the f u e l  does not occur within 25 cycles, but  

fu r the r  study of the e f fec ts  of varying amounts of Y 2 O 3  addi t ions a re  

needed t o  b e t t e r  def ine the minimum amounts required f o r  adequate f u e l  

s t a b i l i z a t i o n .  

The data 

I n i t i a l  screening t e s t s  on the  r e l a t i v e  effect iveness  of other metal- 

oxide addi t ions has included study of  the  following oxides: strontium 

oxide (SrO),  magnesium oxide ( M g O ) ,  neodymium oxide (Nd2031, cerium 

oxide (CeOZ), and praseodymium oxide (Fr02) 

on the  basis of t h e i r  apparent s o l u b i l i t i e s  i n  U02 (based on considera- 

t i ons  of ionic  rad i i ) ,  t h e i r  valencies, and t h e i r  l o w  thermal neutron 

cross  sect ions (needed f o r  use i n  a thermal r eac to r ) .  

t e s t s  on pa r t i a l ly -c l ad  W $. 35 voluae % U02,  composites containing 

These oxides were selected 

Results of cyc l ic  
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10 m l e  4 of the  addi t ives  indicated tha t  the  effect iveness  of ,hese 

addi t ives  generally f a l l  i n t o  the three following groups: 

(1) additions of SrO and MgO yielded f u e l  loss r e s u l t s  similar t o  

those obtained with CaO additions; 

( 2 )  additions of Nd2O3 were about as e f fec t ive  as those of Y2O3, and 

(3) additons of Pro2 and Ce02 were even more e f f ec t ive  than Y2O3 

additions.  

Additions of Nd2O3 and Y 2 O 3  a r e  thought t o  be e f fec t ive  i n  s t ab i l i z ing  

U02 because they form a vacancy-defect, f luori te- type l a t t i c e  w i t h  U02 

t h a t  i s  more d i f f i c u l t  t o  reduce than the  unaltered U02 l a t t i c e  (as 

described i n  Ref. 6 ) .  

o r  Ce02 is thought t o  be associated with the reduction of these metal 

oxides t o  Pr2O3 or Ce2O3, respectively, a t ' e l e v a t e d  temperatures. 

reduction would a l s o  r e s u l t  i n  a defect U02 l a t t i c e ,  but i n  addition, 

it w o u l d  re lease  oxygen t o  the composite causing an increase i n  the  

oxygen a c t i v i t y  of t he  system. Based on the r e s u l t s  of screening t e s t s  

on par t ia l ly-c lad  composites, fur ther  study w i l l  be made of ful ly-clad 

composites containing f u e l  par t ic les  s t ab i l i zed  w i t h  e i t he r  Pro2 or CeO2 

s o l i d  so lu t ion  additions.  

The possible greater  s t a b i l i t y  of UO2 with Pro2 

This 

SUMMARY 

I n  se lec t ing  a fuel-matrix system f o r  f u e l  elements i n  a tungsten, 

water-moderated reactor,  prevention of f u e l  losses  due t o  both fuel 

vaporization and decomposition must be considered. The various 
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methods f o r  reducing f u e l  losses  must take in to  account the propert ies  of 

the composites and the various fabr ica t ion  and inspection methods ava i l -  

ab le  f o r  tungsten-uranium dloxide f u e l  elements. Based on these con- 

s idera t ions  and the current  knowledge of f u e l  s t ab i l i za t ion ,  tungsten- 

coated uranium dioxide pa r t i c l e s  containing 10 mole $, y t t r i a  have been 

se lec ted  f o r  use i n  fabr ica t ing  the i n i t i a l  generation of configurations 

that w i l l  be used i n  an extensive f u e l  element t e s t i n g  proeam.1 This 

combination of fue l - s t ab i l i ze r  and vaporization-inhibitor should r e s u l t  

i n  tungsten-uranium dioxide composites with acceptable f u e l  re ten t ion  

capab i l i t i e s  under the cur ren t ly  envisioned reactor  operating conditions. 

However, s ince more severe reac tor  operating conditions ( i ;e., higher 

temperatures and/or longer l i v e s )  may eventually be required, study of 

other  methods of reducing f u e l  losses  i s  continuing. 
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Fig. 1. - W + 20 volume % 
U02 composite surface clad 
by vapor deposition and 
tested for 2 hours at 4500" 
F i n  Hp. 

(a) Containing less than 50 ppm of halide. 

CS-31146 

(b) Roll composition tested. 
Fig. 2. - Use of tungsten-coated U02 particles in 

producing U02 composites. 



OD 
W 
0 m 
w 
I 

Number of 10-min cycles (4500" F - H2) 

Fig. 3. - Effect of fuel loading on fuel loss from thermal cycled W-UOz specimens. 
(Samplesize, 18 3 by 1 by0.021 in.; approx 0.002 in. tungsten cladding on 

major faces; edges unclad; fuel particle size, approx 50 v.) 
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Fig. 4. - Effect of either Th02-additions or fine U02 particles 
on the thermal cycling life of W-UO2 composites. (Sample 

cladding on major faces; edges unclad. 1 

size, 18 3 by 1 by 0.021 in.; approx. 0.002 in. tungsten 
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Fig. 5. - Effects of stabilizing additives on the thermal cycling life of fully clad 

tungsten cladding on  major faces and >O. 050 in tungsten cladding on edges; 
additives, 10 molar %additions i n  solid solution with UO2; fuel loadings ex- 
pressed in volume %as equivalent U02 concentrations.) 

W-UO2 composites. (Sample size, lg 3 by 1 by 0.021 in.; approx 0.002 in. 
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Fig. 6. - W + 20 (UO-x) composites tested for 25 10-minute cycles to 4500" F in H2. 
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Fig. 7. - Effect of varying amounts of Y203 additions on the thermal cycling life of 

fully clad W-U02 composites. (Sample size, 13 by 1 byO.021 in.; approx. 0.002 in. 
tungsten cladding on major faces and >O. 050 in. tungsten cladding on edges; 
additives, Y2O3 additions expressed as molar %in UO2; fuel loadings, uranium 
content equivalent to W + U02 composites with 35 volume %UOp 1 
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